!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 论文著作-大气气溶胶科学与技术研究室
  Highlight Paper
  Cover Paper
Impacts of new particle formation on aerosol cloud condensation


       New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a factor of 1.2–1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a rate of 4.33 μg cm-3 h-1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h-1 and 0.36 cm-3 s-1, respectively. The newly formed particles grew quickly from nucleation mode (10–20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4–1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN/NCN) were significantly enhanced from 0.24–0.60 to 0.30–0.91 at SS of 0.2–1.0% due to the NPF. On the basis of the κ-Khler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2=0.96, Npredicted/Nmeasured=1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra; thus, it significantly promotes NCCN and aerosol CCN activity in this urban environment.The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g., 1.0%) conditions.

Copyright 2004-2011 大气气溶胶科学与技术研究室


沪公网安备 31011002001194号

欢迎您访问,您是第 位访客!